Continuous state branching processes in random environments.

J.C. Pardo

CIMAT
CB-processes.

A continuous-state branching process (or CB-process) is a non-negative valued strong Markov process with probabilities \((\mathbb{P}_x, x \geq 0)\) such that for any \(x, y \geq 0\), \(\mathbb{P}_{x+y}\) is equal in law to the convolution of \(\mathbb{P}_x\) and \(\mathbb{P}_y\).
Continuous state branching processes in random environments.

Introduction

CB-processes.

A continuous-state branching process (or CB-process) is a non-negative valued strong Markov process with probabilities \((\mathbb{P}_x, x \geq 0)\) such that for any \(x, y \geq 0\), \(\mathbb{P}_{x+y}\) is equal in law to the convolution of \(\mathbb{P}_x\) and \(\mathbb{P}_y\).

CB-processes may be thought of as the continuous (in time and space) analogues of classical Galton-Watson branching processes.
CB-processes.

A continuous-state branching process (or CB-process) is a non-negative valued strong Markov process with probabilities $(P_x, x \geq 0)$ such that for any $x, y \geq 0$, P_{x+y} is equal in law to the convolution of P_x and P_y.

CB-processes may be thought of as the continuous (in time and space) analogues of classical Galton-Watson branching processes.

More precisely, a CB-process $Y = (Y_t, t \geq 0)$ is a Markov process taking values in $[0, \infty]$, where 0 and ∞ are two absorbing states, and satisfying the branching property.
CB-processes.

A continuous-state branching process (or CB-process) is a non-negative valued strong Markov process with probabilities \((\mathbb{P}_x, x \geq 0)\) such that for any \(x, y \geq 0\), \(\mathbb{P}_{x+y}\) is equal in law to the convolution of \(\mathbb{P}_x\) and \(\mathbb{P}_y\).

CB-processes may be thought of as the continuous (in time and space) analogues of classical Galton-Watson branching processes.

More precisely, a CB-process \(Y = (Y_t, t \geq 0)\) is a Markov process taking values in \([0, \infty]\), where 0 and \(\infty\) are two absorbing states, and satisfying the branching property.

In particular,

\[
\mathbb{E}_x \left[e^{-\lambda Y_t} \right] = \exp\{-xu_t(\lambda)\}, \quad \text{for } \lambda \geq 0,
\]

for some function \(u_t(\lambda)\).
The function $u_t(\lambda)$ is determined by the integral equation

$$
\int_{u_t(\lambda)}^{\lambda} \frac{1}{\psi(u)} du = t
$$

where ψ (branching mechanism of Y) satisfies the Lévy-Khintchine formula

$$
\psi(\lambda) = -a\lambda + \gamma^2 \lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x 1_{\{x < 1\}}) \mu(dx),
$$

where $a \in \mathbb{R}$, $\gamma \geq 0$ and μ is a σ-finite measure such that

$$
\int_{(0,\infty)} (1 \wedge x^2) \mu(dx) < \infty.
$$
The function $u_t(\lambda)$ is determined by the integral equation

$$\int_{u_t(\lambda)}^{\lambda} \frac{1}{\psi(u)} \, du = t$$

where ψ (branching mechanism of Y) satisfies the Lévy-Khinchine formula

$$\psi(\lambda) = -a\lambda + \gamma^2 \lambda^2 + \int_{(0,\infty)} \left(e^{-\lambda x} - 1 + \lambda x 1_{\{x<1\}} \right) \mu(dx),$$

where $a \in \mathbb{R}$, $\gamma \geq 0$ and μ is a σ-finite measure such that

$$\int_{(0,\infty)} (1 \wedge x^2) \mu(dx) < \infty.$$

Observe $\mathbb{E}_x[Y_t] = xe^{-\psi'(0^+)t}$. Hence, in respective order, a CB-process is called supercritical, critical or subcritical accordingly as $\psi'(0^+) < 0$, $\psi'(0^+) = 0$ or $\psi'(0^+) > 0$.
The probability of extinction is given by

\[P_x \left(\lim_{t \to \infty} Y_t = 0 \right) = e^{-\eta x}, \]

where \(\eta \) is the largest root of \(\psi \).
The probability of extinction is given by

$$
\mathbb{P}_x \left(\lim_{t \to \infty} Y_t = 0 \right) = e^{-\eta x},
$$

where η is the largest root of ψ.

A CB-process Y with branching mechanism ψ has a finite time extinction almost surely if and only if

$$
\int_{0}^{\infty} \frac{du}{\psi(u)} < \infty \quad \text{and} \quad \psi'(0+) \geq 0.
$$
A CB-process can also be defined as the unique non-negative strong solution of the stochastic differential equation

\[
Y_t = Y_0 + a \int_0^t Y_s \, ds + \int_0^t \sqrt{2\gamma^2 Y_s} \, dB_s \\
+ \int_0^t \int_{(0,1)} \int_0^{Y_s-} z \tilde{N}(ds, dz, du) + \int_0^t \int_{[1,\infty)} \int_0^{Y_s-} zN(ds, dz, du),
\]

where \(B = (B_t, t \geq 0) \) is a standard Brownian motion, \(N \) is a Poisson random measure independent of \(B \), with intensity \(ds \otimes \mu(dz) \otimes du \) and \(\tilde{N} \) is its compensated version.
CB-process in a Lévy random environment

We introduce a continuous state branching process in a Lévy random environment (CBLRE) as the unique non-negative strong solution of the stochastic differential equation

\[
Z_t = Z_0 + a \int_0^t Z_s \, ds + \int_0^t \sqrt{2 \gamma^2 Z_s} \, dB_s + \int_0^t \int_{(0,1)} \int_0^{Z_s} \tilde{N}(ds, dz, du) + \int_0^t \int_{[1,\infty)} \int_0^{Z_s} zN(ds, dz, du),
\]
We introduce a continuous state branching process in a Lévy random environment (CBLRE) as the unique non-negative strong solution of the stochastic differential equation

\[Z_t = Z_0 + a \int_0^t Z_s \, ds + \int_0^t \sqrt{2\gamma^2 Z_s} \, dB_s + \int_0^t Z_s \, dS_s \]

\[+ \int_0^t \int_0^{Z_s} \int_0^{\sigma \tilde{N}(ds, dz, du)} + \int_0^t \int_{[1, \infty)} \int_0^{Z_s} zN(ds, dz, du), \]

where

\[S_t = \alpha t + \sigma B_t^{(e)} + \int_0^t \int_{(-1,1)} (e^z - 1) \tilde{N}^{(e)}(ds, dz) \]

\[+ \int_0^t \int_{\mathbb{R}\setminus(-1,1)} (e^z - 1) N^{(e)}(ds, dz), \]
with $\alpha \in \mathbb{R}$ and $\sigma \geq 0$, $B^{(e)} = (B^{(e)}_t, t \geq 0)$ is a standard Brownian motion and $N^{(e)}(ds, dz)$ is a Poisson random measure in $\mathbb{R}_+ \times \mathbb{R}$ independent of $B^{(e)}$ with intensity $ds\pi(dy)$, $\tilde{N}^{(e)}$ its compensated version and π is a σ-finite measure satisfying

$$\int_{\mathbb{R}} (1 \wedge z^2)\pi(dz) < \infty.$$

We will assume that all the objects involve in the branching and environmental terms are mutually independent.
with $\alpha \in \mathbb{R}$ and $\sigma \geq 0$, $B^{(e)} = (B_t^{(e)}, t \geq 0)$ is a standard Brownian motion and $N^{(e)}(ds, dz)$ is a Poisson random measure in $\mathbb{R}_+ \times \mathbb{R}$ independent of $B^{(e)}$ with intensity $ds \pi(dy)$, $\tilde{N}^{(e)}$ its compensated version and π is a σ-finite measure satisfying

$$\int_{\mathbb{R}} (1 \wedge z^2) \pi(dz) < \infty.$$

We will assume that all the objects involve in the branching and environmental terms are mutually independent.

We define the auxiliary process

$$K_t = mt + \sigma B_t^{(e)} + \int_0^t \int_{(-1,1)} v\tilde{N}^{(e)}(ds, dv) + \int_0^t \int_{\mathbb{R}\setminus(-1,1)} vN^{(e)}(ds, dv),$$

where

$$m = \alpha - \frac{\sigma^2}{2} - \int_{(-1,1)} (e^{uv} - 1 - v) \pi(dv).$$
Let $C^2(\mathbb{R}_+)$ and $D(\mathbb{R}_+)$ be the sets of functions with continues first and second derivatives and the set of càdlàg functions, respectively.
Let $C^2(\mathbb{R}_+)$ and $D(\mathbb{R}_+)$ be the sets of functions with continues first and second derivatives and the set of càdlàg functions, respectively.

Theorem

The previous stochastic differential equation has a unique non-negative strong solution. The process $Z = (Z_t, t \geq 0)$ is a Markov process and, conditionally on K, it satisfies the branching property.
Let $C^2(\mathbb{R}_+)$ and $D(\mathbb{R}_+)$ be the sets of functions with continues first and second derivatives and the set of càdlàg functions, respectively.

Theorem

The previous stochastic differential equation has a unique non-negative strong solution. The process $Z = (Z_t, t \geq 0)$ is a Markov process and, conditionally on K, it satisfies the branching property.

Moreover if $|\psi'(0+)| < \infty$, then the auxiliary process can be taken as $K_t^{(0)} = K_t + \psi'(0+)t$ and for any $t > 0$

$$
\mathbb{E}_Z \left[\exp \left\{ -\lambda Z_t e^{-K_t^{(0)}} \right\} \bigg| K \right] = \exp \left\{ -z v_t(0, \lambda, K^{(0)}) \right\} \quad a.s.,
$$

where for every $(\lambda, \delta) \in (\mathbb{R}_+, D(\mathbb{R}_+))$, $v_t : s \in [0, t] \mapsto v_t(s, \lambda, \delta)$ is the unique solution of the backward differential equation

$$
\frac{\partial}{\partial s} v_t(s, \lambda, K^{(0)}) = e^{K_s^{(0)}} \psi_0(v_t(s, \lambda, K^{(0)}) e^{-K_s^{(0)}}), \quad v_t(t, \lambda, K^{(0)}) = \lambda,
$$
and

\[\psi_0(\lambda) = \psi(\lambda) - \lambda \psi'(0) = \gamma^2 \lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x) \mu(dx). \]
and

\[\psi_0(\lambda) = \psi(\lambda) - \lambda \psi'(0) = \gamma^2 \lambda^2 + \int_{(0, \infty)} (e^{-\lambda x} - 1 + \lambda x) \mu(dx). \]

Q: Can we find a unique solution \(v_t(s, \lambda, K) \) **when** \(\psi(0+) = -\infty \)?
and

$$
\psi_0(\lambda) = \psi(\lambda) - \lambda \psi'(0) = \gamma^2 \lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x) \mu(dx).
$$

OQ: Can we find a unique solution $v_t(s, \lambda, K)$ when $\psi(0+) = -\infty$?

OQ: Can we define the SDE of above by replacing the Lévy environment by another process?
and

\[\psi_0(\lambda) = \psi(\lambda) - \lambda \psi'(0) = \gamma^2 \lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x) \mu(dx). \]

OQ: Can we find a unique solution \(v_t(s, \lambda, K) \) when \(\psi(0+) = -\infty \)?

OQ: Can we define the SDE of above by replacing the Lévy environment by another process? Actually, we can replace the Lévy environment by a Markov additive environment (Palau & P.)
and

\[\psi_0(\lambda) = \psi(\lambda) - \lambda\psi'(0) = \gamma^2 \lambda^2 + \int_{(0,\infty)} \left(e^{-\lambda x} - 1 + \lambda x \right) \mu(dx). \]

OQ: Can we find a unique solution \(v_t(s, \lambda, K) \) when \(\psi(0+) = -\infty \)?

OQ: Can we define the SDE of above by replacing the Lévy environment by another process? Actually, we can replace the Lévy environment by a Markov additive environment (Palau & P.)

Neveu’s branching process: This example correspond to the case when

\[\psi(u) = u \log u, \quad u \geq 0. \]
and

\[\psi_0(\lambda) = \psi(\lambda) - \lambda \psi'(0) = \gamma^2 \lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x) \mu(dx). \]

OQ: Can we find a unique solution \(v_t(s, \lambda, K) \) when \(\psi(0+) = -\infty \)?

OQ: Can we define the SDE of above by replacing the Lévy environment by another process? Actually, we can replace the Lévy environment by a Markov additive environment (Palau & P.)

Neveu’s branching process: This example correspond to the case when

\[\psi(u) = u \log u, \quad u \geq 0. \]

Observe that \(\psi'(0+) = -\infty \). In this case

\[v_t(s, \lambda, K) = \exp \left\{ e^s \int_s^t e^{-u} K_u \, du + \log \lambda e^{-(t-s)} \right\}. \]
Then,
\[
\mathbb{E}_z \left[\exp \left\{ -\lambda Z_t e^{-K_t} \right\} \middle| K \right] = \exp \left\{ -z \lambda e^{-t} \exp \left\{ \int_0^t e^{-s} K_s ds \right\} \right\} \quad a.s.,
\]
which implies that
\[
\mathbb{P}_z \left(Z_t > 0 \middle| K \right) = 1, \quad t > 0.
\]
Then,
\[
\mathbb{E}_z \left[\exp \left\{ -\lambda Z_t e^{-K_t} \right\} \bigg| K \right] = \exp \left\{ -z \lambda e^{-t} \exp \left\{ \int_0^t e^{-s} K_s ds \right\} \right\} \quad a.s.,
\]
which implies that
\[
\mathbb{P}_z \left(Z_t > 0 \bigg| K \right) = 1, \quad t > 0.
\]

Feller’s diffusion If \(a = \mu(0, \infty) = 0 \), the CBBRE is given by
\[
Z_t = Z_0 + \alpha \int_0^t Z_s ds + \sigma \int_0^t Z_s dS_s + \int_0^t \sqrt{2\gamma^2 Z_s} dB_s.
\]
Then,\
\[
\mathbb{E}_z \left[\exp \left\{ -\lambda Z_t e^{-K_t} \right\} \middle| K \right] = \exp \left\{ -z \lambda e^{-t} \exp \left\{ \int_0^t e^{-s} K_s ds \right\} \right\} \quad a.s.,
\]
which implies that
\[
\mathbb{P}_z \left(Z_t > 0 \middle| K \right) = 1, \quad t > 0.
\]

Feller’s diffusion If \(a = \mu(0, \infty) = 0 \), the CBBRE is given by
\[
Z_t = Z_0 + \alpha \int_0^t Z_s ds + \sigma \int_0^t Z_s dS_s + \int_0^t \sqrt{2\gamma^2 Z_s} dB_s.
\]

Stable case. Here, the branching mechanism is of the form
\[
\psi(\lambda) = -a \lambda + c_\beta \lambda^{\beta+1}, \quad \lambda \geq 0,
\]
for some \(\beta \in (-1, 0) \cup (0, 1) \), \(a \in \mathbb{R} \), and
\[
\left\{ \begin{array}{ll}
 c_\beta < 0 & \text{if } \beta \in (-1, 0), \\
 c_\beta > 0 & \text{if } \beta \in (0, 1).
\end{array} \right.
\]
In this case, we note

\[
\psi'(0+) = \begin{cases}
-\infty & \text{if } \beta \in (-1, 0), \\
-a & \text{if } \beta \in (0, 1).
\end{cases}
\]
In this case, we note

\[\psi'(0+) = \begin{cases}
-\infty & \text{if } \beta \in (-1, 0), \\
-a & \text{if } \beta \in (0, 1).
\end{cases} \]

We use in both cases the backward differential equation of Theorem 1 and observe that it satisfies

\[\frac{\partial}{\partial s} v_t(s, \lambda, \delta) = -av_t(s, \lambda, \delta) + c_\beta v_t^{\beta+1}(s, \lambda, \delta) e^{-\beta \delta s}. \]
In this case, we note

\[\psi'(0+) = \begin{cases}
-\infty & \text{if } \beta \in (-1, 0), \\
-a & \text{if } \beta \in (0, 1).
\end{cases} \]

We use in both cases the backward differential equation of Theorem 1 and observe that it satisfies

\[\frac{\partial}{\partial s} v_t(s, \lambda, \delta) = -av_t(s, \lambda, \delta) + c\beta v_{t}^{\beta+1}(s, \lambda, \delta) e^{-\beta\delta s}. \]

Therefore,

\[v_t(s, \lambda, \delta) = e^{as} \left((\lambda e^{at})^{-\beta} + \beta c\beta \int_s^t e^{-\beta(\delta u + au)} du \right)^{-1/\beta}. \]

Implying the following a.s. identity

\[\mathbb{E}_z \left[\exp \left\{ -\lambda Z_t e^{-K_t^{(0)}} \right\} \middle| K^{(0)} \right] = \exp \left\{ -z \left(\lambda^{-\beta} + \beta c\beta \int_0^t e^{-\beta K_u^{(0)}} du \right)^{-1/\beta} \right\}. \]
Long-term behaviour

Similarly to the case of CB-processes, there are three events which are of immediate concern for the process Z, explosion, absorption and extinction.
Long-term behaviour

Similarly to the case of CB-processes, there are three events which are of immediate concern for the process Z, explosion, absorption and extinction.

Proposition

Assume $|\psi'(0+)| < \infty$, then a CBPBRE Z with branching mechanism ψ satisfies

$$\mathbb{P}_z(Z_t < \infty) = 1, \quad \text{for all } t > 0.$$
Long-term behaviour

Similarly to the case of CB-processes, there are three events which are of immediate concern for the process Z, *explosion*, *absorption* and *extinction*.

Proposition

Assume $|\psi'(0+)| < \infty$, then a CBPBRE Z with branching mechanism ψ satisfies

$$P_z(Z_t < \infty) = 1, \quad \text{for all } t > 0.$$

OQ: Can we get a necessary and sufficient condition?
Long-term behaviour

Similarly to the case of CB-processes, there are three events which are of immediate concern for the process Z, explosion, absorption and extinction.

Proposition

Assume $|\psi'(0+)| < \infty$, then a CBPBRE Z with branching mechanism ψ satisfies

$$P_z(Z_t < \infty) = 1, \quad \text{for all } t > 0.$$

OQ: Can we get a necessary and sufficient condition?

Stable case with $\beta \in (-1, 0)$. From the Laplace transform of \tilde{Z} (taking λ goes to 0), we deduce

$$P_z\left(Z_t < \infty \mid K \right) = \exp \left\{ -z \left(\beta c \beta \int_0^t e^{-\beta (K_u + au)} \, du \right)^{-1/\beta} \right\} \quad \text{a.s.,}$$
implying

\[P_z \left(Z_t = \infty \mid K \right) = 1 - \exp \left\{ -z \left(\beta c_\beta \int_0^t e^{-\beta(K_u + au)} \, du \right)^{-1/\beta} \right\} > 0. \]
implying

\[\mathbb{P}_z (Z_t = \infty \mid K) = 1 - \exp \left\{ -z \left(\beta c_\beta \int_0^t e^{-\beta(K_u + au)} du \right)^{-1/\beta} \right\} > 0. \]

Moreover, if the process \((K_u + au, u \geq 0)\) does not drift to \(+\infty\), we deduce that \(\lim_{t \to \infty} Z_t = \infty\), a.s.
implying

$$P_z(Z_t = \infty | K) = 1 - \exp \left\{-z \left(\beta c_\beta \int_0^t e^{-\beta(K_u + au)} du \right)^{-1/\beta} \right\} > 0.$$

Moreover, if the process \((K_u + au, u \geq 0)\) does not drift to \(+\infty\), we deduce that \(\lim_{t \to \infty} Z_t = \infty\), a.s.

On the other hand, if the process \((K_u + au, u \geq 0)\) drifts to \(+\infty\), we have an interesting behaviour of the process \(Z\),

$$P_z(Z_\infty = \infty) = 1 - \mathbb{E} \left[\exp \left\{-z \left(\beta c_\beta \int_0^\infty e^{-\beta(K_u + au)} du \right)^{-1/\beta} \right\} \right].$$
implying

\[\mathbb{P}_z \left(Z_t = \infty \mid K \right) = 1 - \exp \left\{ -z \left(\beta c_\beta \int_0^t e^{-\beta(K_u + au)} \, du \right)^{-1/\beta} \right\} > 0. \]

Moreover, if the process \((K_u + au, u \geq 0)\) does not drift to \(+\infty\), we deduce that \(\lim_{t \to \infty} Z_t = \infty\), a.s.

On the other hand, if the process \((K_u + au, u \geq 0)\) drifts to \(+\infty\), we have an interesting behaviour of the process \(Z\),

\[\mathbb{P}_z \left(Z_\infty = \infty \right) = 1 - \mathbb{E} \left[\exp \left\{ -z \left(\beta c_\beta \int_0^\infty e^{-\beta(K_u + au)} \, du \right)^{-1/\beta} \right\} \right]. \]

Neveu case. By taking \(\lambda\) goes to 0 in the Laplace exponent of \(\tilde{Z}\), one can see that the process is conservative conditionally on the environment, i.e.

\[\mathbb{P}_z (Z_t < \infty \mid K) = 1, \]

for all \(t \in (0, \infty)\) and \(z \in [0, \infty)\).
Proposition

Assume that $|\psi'(0+)| < \infty$. Let $(Z_t, t \geq 0)$ be a CBPBR with branching mechanism given by ψ.
Proposition

Assume that $|\psi'(0+)| < \infty$. Let $(Z_t, t \geq 0)$ be a CBPBRE with branching mechanism given by ψ.

i) If $K^{(0)}$ drifts to $-\infty$, then $P_z \left(\lim_{t \to \infty} Z_t = 0 \bigg| K^{(0)} \right) = 1$, a.s.
Proposition

Assume that $|\psi'(0+)| < \infty$. Let $(Z_t, t \geq 0)$ be a CBPBR with branching mechanism given by ψ.

i) If $K^{(0)}$ drifts to $-\infty$, then
 \[P_z \left(\lim_{t \to \infty} Z_t = 0 \mid K^{(0)} \right) = 1, \text{ a.s.} \]

ii) If $K^{(0)}$ oscillates, then
 \[P_z \left(\liminf_{t \to \infty} Z_t = 0 \mid K^{(0)} \right) = 1, \text{ a.s.} \]

Moreover if $\gamma > 0$ then
 \[P_z \left(\lim_{t \to \infty} Z_t = 0 \mid K^{(0)} \right) = 1, \text{ a.s.} \]
Proposition

iii) If $K^{(0)}$ drifts to $+\infty$ and

$$\int_{0}^{\infty} x \ln x \mu(dx) < \infty,$$

then $\mathbb{P}_z \left(\lim_{t \to \infty} \inf Z_t > 0 \mid K^{(0)} \right) > 0$ a.s., and there exists a non-negative finite r.v. W such that

$$Z_t e^{-K^{(0)}_t} \xrightarrow{t \to \infty} W, \ a.s \quad \text{and} \quad \{ W = 0 \} = \left\{ \lim_{t \to \infty} Z_t = 0 \right\}.$$

Moreover, if $\gamma > 0$, we have

$$\mathbb{P}_z \left(\lim_{t \to \infty} Z_t = 0 \right) \geq \left(1 + \frac{z\sigma^2}{\gamma^2} \right)^{-\frac{2m}{\sigma^2}}.$$
OQ: What happen when the integral condition is not satisfied?

It is important to note that in the Feller and stable cases, one can deduce directly that \(\lim_{t \to \infty} Z_t = 0 \), a.s., whenever \(K(0) \) does not drift to \(+\infty \).

In the case when \(K(0) \) drifts to \(+\infty \), we have
\[
P_{Z}(\lim_{t \to \infty} Z_t = 0 | K(0)) = \exp\left\{ -Z(\beta c \int_0^\infty e^{-\beta K(0) u} d\mu) - 1/\beta \right\},
\]
a.s.
OQ: What happen when the integral condition is not satisfied?

It is important to note that in the Feller and stable cases, one can deduce directly that

$$\lim_{t \to \infty} Z_t = 0, \quad \text{a.s.,}$$

whenever $K^{(0)}$ does not drift to $+\infty$.
OQ: What happen when the integral condition is not satisfied?

It is important to note that in the Feller and stable cases, one can deduce directly that

$$\lim_{t \to \infty} Z_t = 0, \quad \text{a.s.},$$

whenever $K^{(0)}$ does not drift to $+\infty$.

In the case when $K^{(0)}$ drifts to $+\infty$, we have

$$\mathbb{P}_z \left(\lim_{t \to \infty} Z_t = 0 \mid K^{(0)} \right) = \exp \left\{ -z \left(\beta c_\beta \int_0^\infty e^{-\beta K_u^{(0)}} \, du \right)^{-1/\beta} \right\}, \quad \text{a.s.}$$
Stable case

Theorem

Let \((Z_t, t \geq 0)\) be the stable CBLRE with index \(\beta \in (-1, 0)\) and \(Z_0 = z > 0\).
Stable case

Theorem
Let \((Z_t, t \geq 0)\) be the stable CBLRE with index \(\beta \in (-1, 0)\) and \(Z_0 = z > 0\).

i) Subcritical-explosion. If \(\phi'_K(0+) < 0\), then there exist \(c_1(z) > 0\) such that
\[
\lim_{t \to \infty} \mathbb{P}_z(Z_t < \infty) = c_1(z).
\]
Stable case

Theorem

Let \((Z_t, t \geq 0)\) be the stable CBLRE with index \(\beta \in (-1, 0)\) and \(Z_0 = z > 0\).

i) Subcritical-explosion. If \(\phi'_K(0+) < 0\), then there exist \(c_1(z) > 0\) such that

\[
\lim_{t \to \infty} \mathbb{P}_z(Z_t < \infty) = c_1(z).
\]

ii) Critical-explosion. If \(\phi'_K(0+) < 0\) (+ some moments conditions), then there exist \(c_2(z) > 0\) such that

\[
\lim_{t \to \infty} \sqrt{t} \mathbb{P}_z(Z_t < \infty) = c_2(z).
\]
Stable case

Theorem

Let \((Z_t, t \geq 0)\) be the stable CBLRE with index \(\beta \in (-1, 0)\) and \(Z_0 = z > 0\).

i) *Subcritical-explosion.* If \(\phi'_K(0+) < 0\), then there exist \(c_1(z) > 0\) such that

\[
\lim_{t \to \infty} \mathbb{P}_z(Z_t < \infty) = c_1(z).
\]

ii) *Critical-explosion.* If \(\phi'_K(0+) < 0\) (*+ some moments conditions*), then there exist \(c_2(z) > 0\) such that

\[
\lim_{t \to \infty} \sqrt{t} \mathbb{P}_z(Z_t < \infty) = c_2(z).
\]

iii) *Supercritical-explosion.* If \(\phi'_K(0+) < 0\) (*+ some moments conditions*) then there exist \(c_3(z) > 0\)

\[
\lim_{t \to \infty} t^{\frac{3}{2}} e^{\phi_K(\tau)} \mathbb{P}_z(Z_t < \infty) = c_3(z),
\]

where \(\tau\) is the value at which \(\phi_K\) attains its minimum.
Theorem

Let \((Z_t, t \geq 0)\) be a the stable CBLRE with \(\beta \in (0, 1)\). Then for all \(z > 0\),
Theorem

Let \((Z_t, t \geq 0)\) be a the stable CBLRE with \(\beta \in (0, 1)\). Then for all \(z > 0\),

i) (Supercritical case) If \(\phi'_K(0+) > 0 \) (+ some moments conditions), then there exist \(c_4(z) > 0\) such that

\[
\lim_{t \to \infty} \mathbb{P}_z(Z_t > 0) = c_4(z).
\]
Theorem

Let \((Z_t, t \geq 0)\) be a the stable CBLRE with \(\beta \in (0, 1)\). Then for all \(z > 0\),

i) *(Supercritical case)* If \(\phi'_K(0+) > 0\) *(+ some moments conditions)*, then there exist \(c_4(z) > 0\) such that

\[
\lim_{t \to \infty} \mathbb{P}_z(Z_t > 0) = c_4(z).
\]

ii) *(Critical case)* If \(\phi'_K(0+) = 0\) *(+ some moments conditions)*, then there exist \(c_5(z) > 0\) such that

\[
\lim_{t \to \infty} \sqrt{t} \mathbb{P}_z(Z_t > 0) = c_5(z).
\]
Theorem

iii) \textit{(Weakly subcritical)} If $\phi'_K(0+) = 0$ and $\phi'_K(1) > 0$ (+ some moments conditions), then there exist $c_6(z) > 0$ such that

$$\lim_{t \to \infty} t^{\frac{3}{2}} e^{\phi_K(\tau)} P_z(Z_t > 0) = c_6(z),$$

where τ is the value at which ϕ_K attains its minimum.
Continuous state branching processes in random environments.

Stable case

Theorem

iii) (Weakly subcritical) If $\phi'_K(0+) = 0$ and $\phi'_K(1) > 0$ (+ some moments conditions), then there exist $c_6(z) > 0$ such that

$$\lim_{t \to \infty} t^{\frac{3}{2}} e^{\phi_K(\tau)} \mathbb{P}_z(Z_t > 0) = c_6(z),$$

where τ is the value at which ϕ_K attains its minimum.

iv) (Intermediately subcritical) If $\phi'_K(0+) = 0$ and $\phi'_K(1) = 0$ (+ some moments conditions), then there exist $c_7 > 0$ such that

$$\lim_{t \to \infty} \sqrt{t} e^{\phi_K(1)} \mathbb{P}_z(Z_t > 0) = z c_7.$$
Theorem

iii) *(Weakly subcritical)* If $\phi_K'(0+) = 0$ and $\phi_K'(1) > 0$ (+ some moments conditions), then there exist $c_6(z) > 0$ such that

$$\lim_{t \to \infty} t^{\frac{3}{2}} e^{\phi_K(\tau)} P_z(Z_t > 0) = c_6(z),$$

where τ is the value at which ϕ_K attains its minimum.

iv) *(Intermediately subcritical)* If $\phi_K'(0+) = 0$ and $\phi_K'(1) = 0$ (+ some moments conditions), then there exist $c_7 > 0$ such that

$$\lim_{t \to \infty} \sqrt{t} e^{\phi_K(1)} P_z(Z_t > 0) = zc_7.$$

v) *(Strongly subcritical)* If $\phi_K'(0+) = 0$ and $\phi_K'(1) < 0$ (+ some moments conditions), then there exist $c_7 > 0$ such that

$$\lim_{t \to \infty} e^{t\phi_K(1)} P_z(Z_t > 0) = zc_8.$$
More open questions

- Can we go further than the stable case?
More open questions

- Can we go further than the stable case? Bansaye, P. and Smadi are studying the case when $\psi(\lambda) > \lambda^{1+\epsilon}$, for $\epsilon > 0$ and K satisfies

$$\lim_{t \to \infty} \mathbb{P}(K_t > 0) = \rho \in [0, 1].$$

Palau is studying how the prolific individuals are affected by the environment.

What about quasi-stationary distributions? In the stable case, there must be another regime for the process conditioned to die-out.

We can construct superprocesses (see Mytnik 96), can we study the event of extinction or local extinction?

What about competition models? Gonzalez-Casanova, P. and Perez are studying a particular model which is linked to fragmentation-coalescence processes.
More open questions

- Can we go further than the stable case? Bansaye, P. and Smadi are studying the case when $\psi(\lambda) > \lambda^{1+\epsilon}$, for $\epsilon > 0$ and K satisfies

$$\lim_{t \to \infty} P(K_t > 0) = \rho \in [0, 1].$$

- Can we study its genealogy?
More open questions

- Can we go further than the stable case? Bansaye, P. and Smadi are studying the case when $\psi(\lambda) > \lambda^{1+\epsilon}$, for $\epsilon > 0$ and K satisfies
 \[
 \lim_{t \to \infty} \mathbb{P}(K_t > 0) = \rho \in [0, 1].
 \]

- Can we study its genealogy? Palau is studying how the prolific individuals are affected by the environment.
More open questions

- **Can we go further than the stable case?** Bansaye, P. and Smadi are studying the case when \(\psi(\lambda) > \lambda^{1+\epsilon} \), for \(\epsilon > 0 \) and \(K \) satisfies
 \[
 \lim_{t \to \infty} P(K_t > 0) = \rho \in [0, 1].
 \]

- **Can we study its genealogy?** Palau is studying how the prolific individuals are affected by the environment.

- **What about quasi-stationary distributions?**
More open questions

- Can we go further than the stable case? Bansaye, P. and Smadi are studying the case when $\psi(\lambda) > \lambda^{1+\epsilon}$, for $\epsilon > 0$ and K satisfies
 \[
 \lim_{t \to \infty} \mathbb{P}(K_t > 0) = \rho \in [0, 1].
 \]

- Can we study its genealogy? Palau is studying how the prolific individuals are affected by the environment.

- What about quasi-stationary distributions?

- In the stable case, there must be another regime for the process conditioned to die-out.
More open questions

- Can we go further than the stable case? Bansaye, P. and Smadi are studying the case when $\psi(\lambda) > \lambda^{1+\epsilon}$, for $\epsilon > 0$ and K satisfies

$$\lim_{t \to \infty} \mathbb{P}(K_t > 0) = \rho \in [0, 1].$$

- Can we study its genealogy? Palau is studying how the prolific individuals are affected by the environment.

- What about quasi-stationary distributions?

- In the stable case, there must be another regime for the process conditioned to die-out.

- We can construct superprocesses (see Mytnik 96), can we study the event of extinction or local extinction?
More open questions

- Can we go further than the stable case? Bansaye, P. and Smadi are studying the case when $\psi(\lambda) > \lambda^{1+\epsilon}$, for $\epsilon > 0$ and K satisfies

 $\lim_{t \to \infty} \mathbb{P}(K_t > 0) = \rho \in [0, 1]$.

- Can we study its genealogy? Palau is studying how the prolific individuals are affected by the environment.

- What about quasi-stationary distributions?

- In the stable case, there must be another regime for the process conditioned to die-out.

- We can construct superprocesses (see Mytnik 96), can we study the event of extinction or local extinction?

- What about competition models?
More open questions

- Can we go further than the stable case? Bansaye, P. and Smadi are studying the case when $\psi(\lambda) > \lambda^{1+\epsilon}$, for $\epsilon > 0$ and K satisfies

$$\lim_{t \to \infty} \mathbb{P}(K_t > 0) = \rho \in [0, 1].$$

- Can we study its genealogy? Palau is studying how the prolific individuals are affected by the environment.

- What about quasi-stationary distributions?

- In the stable case, there must be another regime for the process conditioned to die-out.

- We can construct superprocesses (see Mytnik 96), can we study the event of extinction or local extinction?

- What about competition models? Gonzalez-Casanova, P. and Perez are studying a particular model which is linked to fragmentation-coalescence processes.