
Convergence of weighted trees

Batı Şengül
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Ising model

Let G = (V ,E ) be a graph. For β ≥ 0, define a measure Pβ,G on
{−1, 1}V by setting

Pβ,G (σ) =
1

Z
exp

{
β
∑
v∼w

σvσw

}
.
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I β = 0: uniform pick

I β ↑ ∞: pick + or − with pba 1/2 and give all the vertices same spin
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Big problem

I For each n, discretise the sphere S2 to get a finite set Mn (for
example quadrangulations)

I For G ∈Mn, σ ∈ {−1, 1}V :

Pβ((mn, σn) = (G , σ)) =
1

Z
Pβ,G (σ)

I Find a scaling limit of mn.
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Think of mn as a metric space with graph distance dgr .

Gromov-Hausdorf convergence is a notion of convergence of metric spaces.

Theorem (Miermont (2013), Le Gall (2013))

When β = 0 (picking uniformly), for a large class of discriti-
sations

lim
n→∞

(
mn,

1

n1/4
dgr

)
= (m∗, d)

in distribution under the Gromov-Hausdorff topology. The
limiting space (m∗, d) is called the Brownian map.
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Proposed problem

Maps are too difficult!

Let Tn be the set of labelled trees with n vertices and pick (T
(β)
n , σn) by

Pβ((T
(β)
n , σn) = (T , σ)) =

1

Z
P
β,T

(β)
n

(σ)

(possibly with boundary conditions).

Question
Does there exists a space (T (β), d) and a γ > 0 such that

lim
n→∞

(T
(β)
n , n−γdgr ) = (T (β), d)

in distribution?
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What is known?

Theorem (Aldous (1991))

When β = 0 (picking uniformly),

lim
n→∞

(
T

(0)
n ,

1

n1/2
dgr

)
= (T,d)

in distribution under the Gromov-Hausdorff topology. The
limiting space (T,d) is called the continuum random tree.



An approach is to take an exploration of the tree
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An approach is to take an exploration of the tree

and try to incorporate the Ising model when exploring.



Thank You!


