Convergence of weighted trees

Batı Şengül

University of Bath

May 2016
Ising model

Let $G = (V, E)$ be a graph. For $\beta \geq 0$, define a measure $P_{\beta, G}$ on $\{-1, 1\}^V$ by setting

$$P_{\beta, G}(\sigma) = \frac{1}{Z} \exp \left\{ \sum_{v \sim w} \beta \sigma_v \sigma_w \right\}.$$

![Diagram of a graph with vertices and edges]
Ising model

Let $G = (V, E)$ be a graph. For $\beta \geq 0$, define a measure $P_{\beta, G}$ on $\{-1, 1\}^V$ by setting

$$P_{\beta, G}(\sigma) = \frac{1}{Z} \exp \left\{ \beta \sum_{v \sim w} \sigma_v \sigma_w \right\}.$$
\[P_{\beta,G}(\sigma) = \frac{1}{Z} \exp \left\{ \beta \sum_{v \sim w} \sigma_v \sigma_w \right\}. \]

- \(\beta = 0 \): uniform pick
\[P_{\beta, G}(\sigma) = \frac{1}{Z} \exp \left\{ \beta \sum_{v \sim w} \sigma_v \sigma_w \right\}. \]

- \(\beta = 0 \): uniform pick
- \(\beta \uparrow \infty \): pick + or − with pba 1/2 and give all the vertices same spin
Big problem

- For each n, discretise the sphere S^2 to get a finite set \mathcal{M}_n (for example quadrangulations)
For each \(n \), discretise the sphere \(S^2 \) to get a finite set \(\mathcal{M}_n \) (for example quadrangulations).

For \(G \in \mathcal{M}_n, \sigma \in \{-1, 1\}^V \):

\[
\mathbb{P}_\beta((m_n, \sigma_n) = (G, \sigma)) = \frac{1}{Z} \mathbb{P}_{\beta, G}(\sigma)
\]
For each n, discretise the sphere S^2 to get a finite set \mathcal{M}_n (for example quadrangulations).

For $G \in \mathcal{M}_n$, $\sigma \in \{-1, 1\}^V$:

$$\mathbb{P}_\beta((m_n, \sigma_n) = (G, \sigma)) = \frac{1}{Z} \mathbb{P}_{\beta, G}(\sigma)$$

Find a scaling limit of m_n.
Think of m_n as a metric space with graph distance d_{gr}.
Think of m_n as a metric space with graph distance d_{gr}.

Gromov-Hausdorff convergence is a notion of convergence of metric spaces.
Think of \mathbf{m}_n as a metric space with graph distance d_{gr}. Gromov-Hausdorff convergence is a notion of convergence of metric spaces.

Theorem (Miermont (2013), Le Gall (2013))

When $\beta = 0$ (picking uniformly), for a large class of discretisations

$$\lim_{n \to \infty} \left(\mathbf{m}_n, \frac{1}{n^{1/4}} d_{gr} \right) = (\mathbf{m}_*, d)$$

in distribution under the Gromov-Hausdorff topology. The limiting space (\mathbf{m}_*, d) is called the Brownian map.
Proposed problem

Maps are too difficult!
Proposed problem

Maps are too difficult!
Let \mathcal{T}_n be the set of labelled trees with n vertices and pick $(T_n^{(\beta)}, \sigma_n)$ by

$$\mathbb{P}_\beta((T_n^{(\beta)}, \sigma_n) = (T, \sigma)) = \frac{1}{Z} \mathbb{P}_{\beta, T_n^{(\beta)}}(\sigma)$$

(possibly with boundary conditions).

Question

Does there exists a space $(T^{(\beta)}, d)$ and a $\gamma > 0$ such that

$$\lim_{n \to \infty} (T_n^{(\beta)} , n^{-\gamma} d_{gr}) = (T^{(\beta)}, d)$$

in distribution?
What is known?

Theorem (Aldous (1991))

When $\beta = 0$ (picking uniformly),

$$\lim_{n \to \infty} \left(T_n^{(0)}, \frac{1}{n^{1/2}} d_{gr} \right) = (T, d)$$

in distribution under the Gromov-Hausdorff topology. The limiting space (T, d) is called the continuum random tree.
An approach is to take an exploration of the tree
An approach is to take an exploration of the tree
An approach is to take an exploration of the tree and try to incorporate the Ising model when exploring.
Thank You!