Convergence of weighted trees

Batı Şengül

University of Bath

May 2016

Ising model

Let G=(V,E) be a graph. For $\beta \geq 0$, define a measure $\mathbf{P}_{\beta,G}$ on $\{-1,1\}^V$ by setting

$$\mathbf{P}_{\beta,G}(\sigma) = \frac{1}{Z} \exp \left\{ \beta \sum_{v \sim w} \sigma_v \sigma_w \right\}.$$

Ising model

Let G=(V,E) be a graph. For $\beta \geq 0$, define a measure $\mathbf{P}_{\beta,G}$ on $\{-1,1\}^V$ by setting

$$\mathbf{P}_{\beta,G}(\sigma) = \frac{1}{Z} \exp \left\{ \beta \sum_{v \sim w} \sigma_v \sigma_w \right\}.$$

$$\mathbf{P}_{eta,G}(\sigma) = rac{1}{Z} \exp \left\{ eta \sum_{v \sim w} \sigma_v \sigma_w
ight\}.$$

• $\beta = 0$: uniform pick

$$\mathbf{P}_{eta,G}(\sigma) = rac{1}{Z} \exp \left\{ eta \sum_{v \sim w} \sigma_v \sigma_w
ight\}.$$

- $\beta = 0$: uniform pick
- ▶ $\beta \uparrow \infty$: pick + or − with pba 1/2 and give all the vertices same spin

Big problem

▶ For each n, discretise the sphere \mathbb{S}^2 to get a finite set \mathcal{M}_n (for example quadrangulations)

Big problem

For each n, discretise the sphere \mathbb{S}^2 to get a finite set \mathcal{M}_n (for example quadrangulations)

▶ For $G \in \mathcal{M}_n$, $\sigma \in \{-1,1\}^V$:

$$\mathbb{P}_{\beta}((\mathbf{m}_n, \sigma_n) = (G, \sigma)) = \frac{1}{Z} \mathbf{P}_{\beta, G}(\sigma)$$

Big problem

For each n, discretise the sphere \mathbb{S}^2 to get a finite set \mathcal{M}_n (for example quadrangulations)

▶ For $G \in \mathcal{M}_n$, $\sigma \in \{-1,1\}^V$:

$$\mathbb{P}_{\beta}((\mathbf{m}_n, \sigma_n) = (G, \sigma)) = \frac{1}{Z} \mathbf{P}_{\beta, G}(\sigma)$$

Find a scaling limit of \mathbf{m}_n .

Think of \mathbf{m}_n as a metric space with graph distance d_{gr} .

Think of \mathbf{m}_n as a metric space with graph distance d_{gr} . Gromov-Hausdorf convergence is a notion of convergence of metric spaces.

Think of \mathbf{m}_n as a metric space with graph distance d_{gr} . Gromov-Hausdorf convergence is a notion of convergence of metric spaces.

Theorem (Miermont (2013), Le Gall (2013))

When $\beta = 0$ (picking uniformly), for a large class of discritisations

$$\lim_{n\to\infty}\left(\mathbf{m}_n,\frac{1}{n^{1/4}}d_{gr}\right)=\left(\mathbf{m}_*,d\right)$$

in distribution under the Gromov-Hausdorff topology. The limiting space (\mathbf{m}_*,d) is called the Brownian map.

Proposed problem

Maps are too difficult!

Proposed problem

Maps are too difficult!

Let \mathcal{T}_n be the set of labelled trees with n vertices and pick $(\mathcal{T}_n^{(\beta)}, \sigma_n)$ by

$$\mathbb{P}_{\beta}((T_n^{(\beta)}, \sigma_n) = (T, \sigma)) = \frac{1}{Z} \mathsf{P}_{\beta, T_n^{(\beta)}}(\sigma)$$

(possibly with boundary conditions).

Question

Does there exists a space $(T^{(\beta)}, d)$ and a $\gamma > 0$ such that

$$\lim_{n\to\infty} (T_n^{(\beta)}, n^{-\gamma} d_{gr}) = (T^{(\beta)}, d)$$

in distribution?

What is known?

Theorem (Aldous (1991))

When $\beta = 0$ (picking uniformly),

$$\lim_{n\to\infty}\left(T_n^{(0)},\frac{1}{n^{1/2}}d_{gr}\right)=(\mathbf{T},\mathbf{d})$$

in distribution under the Gromov-Hausdorff topology. The limiting space (\mathbf{T},\mathbf{d}) is called the continuum random tree.

An approach is to take an exploration of the tree

An approach is to take an exploration of the tree

An approach is to take an exploration of the tree

and try to incorporate the Ising model when exploring.

Thank You!

